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We have experimentally realized unidirectional or one-way coupling in a mechanical array by powering the
coupling with flowing water. In cyclic arrays with an even number of elements, solitonlike waves spontane-
ously form but eventually annihilate in pairs, leaving a spatially alternating static attractor. In cyclic arrays with
an odd number of elements, this alternating attractor is topologically impossible, and a single soliton always
remains to propagate indefinitely. Our experiments with 14- and 15-element arrays highlight the dynamical
importance of both noise and disorder and are further elucidated by our computer simulations.
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I. INTRODUCTION

Unidirectional or one-way coupling enables the propaga-
tion of solitary waves or solitons �1� and serves as an ex-
treme example of wave propagation in an anisotropic me-
dium �2,3�. It is a fascinating paradigm for nonlinear
dynamics, which has inspired much recent work �4–10�.

In et al. �4� introduced the idea of one-way coupling as a
way of improving the sensitivity and noise tolerance of flux-
gate magnetometers. They established that cyclic arrays or
rings of bistable but overdamped and undriven systems can
oscillate if they are one-way coupled with sufficient strength.
Lindner and Bulsara �8� understood the oscillations of such
arrays as arising from a “frustrated” equilibrium, where
waves of dislocations in equilibria propagate endlessly
around rings of one-way coupled elements. Furthermore,
they demonstrated how noise and coupling mediate the con-
sequent complex spatiotemporal dynamics.

While the idea of one-way coupling emerged in the con-
text of electronic sensors, and we are aware of the use of
one-way coupling in the construction of ring oscillators in
microelectronic circuits �11�, we are unaware of any previous
mechanical realization of the different dynamics afforded by
one-way coupling. In this paper, we report the experimental
observation of the propagation and annihilation of solitons
�12� in relatively long �14- and 15-element� mechanical ar-
rays of one-way coupled oscillators. We observe the sponta-
neous formation and subsequent annihilation of solitons, in-
cluding the distributions of their lifetimes. We also observe
the dramatic qualitative difference between the dynamics of
arrays of even and odd length. Our experiments compare
favorably with computer simulations that include both noise
and disorder �temporal and spatial irregularities�.

II. THEORY

Consider a nonlinear oscillator located by equilibrium co-
ordinate � and confined by a bistable potential V���
=−a�2 /2+b�4 /4 with positive and negative stable equilibria
��= ��a /b. Given rotational inertia I, viscosity �, and cou-
pling k, the two-way coupled equation of motion of oscillator
n in an array of N such elements is

I�̈n + ��̇n = k��n+1 − �n� − k��n − �n−1� + V���n� , �1�

where the overdots represent differentiation with respect to
time, and the prime indicates differentiation with respect to
position. Formally, we achieve one-way coupling by deleting
one of the two coupling terms to get

I�̈n = − ��̇n + A�n − b�n
3 − ��n−1, �2�

where A=a+� and �=−k�0. The coupling both renormal-
izes the shape of the potential and inversely affects the next
oscillator. Effectively, we add an external forcing term that
negates the coupling term we deleted. One-way coupling is
made possible by having each oscillator modify an external
force on the next oscillator.

Such arrays come to rest in several ways. For example, all
the oscillators can assume their positive stable states �n=�+,
where the coupling and spring forces vanish. More generi-
cally, the oscillators can be paired in spatially alternating
positive and negative positions, where the coupling forces
balance the spring forces.

In finite arrays with periodic boundary conditions, the
number of elements critically determines the qualitative dy-
namics, as illustrated by Fig. 1. In even arrays, pairs of soli-
tons collide and annihilate as the array dissipates the kinetic
energy of the back and forth motion of the oscillators. This
leaves the array in a spatially alternating static state. In odd
arrays, complete soliton pairing is impossible. The conse-
quent topological frustration leaves a single soliton that
propagates forever around the ring �8�.

By allowing information to flow in only one direction,
one-way coupling breaks the rotational symmetry of the ring.
Arrays with one-way coupling are more than mere math-
ematical curiosities, and they can be realized so long as an
external force powers the coupling.

III. APPARATUS

Our experimental apparatus, shown in Fig. 2, is a linear
array of elements with periodic boundary conditions. Each
element is an inverted pendulum restrained by two springs
that together form a bistable oscillator. The springs are not
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involved in the coupling. Instead, each oscillator is linearly
coupled to the next by flowing water. One-way coupling is
achieved by mechanically directing this flow so that each
oscillator causes the next to rotate about a central axle com-
mon to all the oscillators.

The individual oscillators, shown schematically in Fig. 3,
are constructed primarily from machined aluminum com-
bined with cut and cemented acrylic. The pendulum arms
and base are made from 0.16-cm-thick aluminum. The arms
are 25-cm-long strips and are attached to a 16.5 cm
�5.0 cm base. Compartmented boxes made of
0.16-cm-thick acrylic, installed on the base of the oscillator,
exploit the water’s weight to help reverse the oscillator.
Holes drilled in the bottom of the compartments and ex-

tended through the base allow water drainage. �The pressure
of the water alone is sufficient in most cases to rotate the
oscillators; the compartments provide an extra margin of
torque against friction but do not noticeably alter the linear-
ity of the coupling.�

Opposing 5.0 N /m springs attach to each oscillator, per-
pendicular to the axis of rotation. Metal washer counter-
weights at the top of the pendulum ensure bistability. When
the pendulum tilts to one side, the gravitational torque on the
pendulum top balances the combined spring torques, result-
ing in two stable equilibria on either side of the vertical.

Coupling is accomplished by directing a vertical water jet
onto the next oscillator. Each oscillator rotates about a fixed
central axle and is connected to a slotted strip that rotates
�and slides� about a parallel fixed axle. The slotted strip con-
trols the horizontal movement of the water jet. When an
oscillator rotates one way, the slotted strip rotates �and
slides� the other way, moving the jet nozzle to the opposite
side. The falling water thus causes the next oscillator to ro-
tate in the reverse direction.

To implement periodic boundary conditions, we split one
oscillator into two parts, one with the pendulum and the
other with the slotted strip, and install them at opposite ends
of the array. The parts are connected by meshing gears and
an auxiliary parallel axle �not shown in Fig. 3�. This facili-
tates changing the length of the array to investigate the dra-
matic effects of parity on the dynamics.

A water circulation system powers the one-way coupled
array. A 140 L reservoir stores water, which is pumped into
both ends of a pressurized 3.2 cm polyvinyl chloride �PVC�
pipe suspended about 1 m above the array parallel to its
axles. A 1.25 L /s pump at one end of the pipe and a
2.50 L /s pump at the other provide sufficient pressure to
evenly distribute water to latex tubes attached to the pipe via
evenly spaced hose nipples. The water flows through the
tubes, out of the nozzles, and onto the oscillators. As it drains
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FIG. 1. Simulated spacetime evolution �n�t� of a cyclic array of
N=15 �top� and N=14 �bottom� one-way coupled oscillators. Grays
code oscillator angles. From random initial conditions, a static, spa-
tially alternating state beckons where individual oscillators are at
rest, rotated positively �white� or negatively �black�. Solitons appear
as diagonal discontinuities in this spatial alternation, and annihilate
in pairs until one or zero remain, depending on the parity of the
array.

FIG. 2. �Color� A water circulation system, including blue res-
ervoir, white pipes, and yellow hoses, powers the one-way coupled
array of bistable oscillators. Video of the apparatus in operation is
available online �14� and shows the solitons propagating right to
left.
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FIG. 3. �Color� A single oscillator, shown at two extremes of its
motion, consists of an inverted pendulum �red� and two restoring
springs �green�, which together create a bistable element. A slotted
strip �yellow� directs falling water �blue� into the next oscillator
�not shown�. Because of the fixed parallel axles �black�, when the
water rotates the pendulum one way, the slotted strip rotates the
opposite way.
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from the compartmented boxes, it falls onto a shelf that di-
rects it back to the reservoir. A system of lab rods, stands,
and clamps supports the entire apparatus, including the shelf
and pressurized pipe. A detailed computer simulation of the
exact apparatus vets the design before construction.

IV. EXPERIMENT

We acquire data by videotaping the evolution of the array.
We import the video to an iMac computer and analyze it
using VIDEOPOINT �13� software to track the motion of the
oscillators. Using elementary trigonometry, we infer the
angle of each oscillator from its vertical displacement in the
video.

We first configure the apparatus as a 15-element array. We
initially set each oscillator in one stable equilibrium or the
other. Flowing water couples the elements, resulting in mul-
tiple solitons that annihilate in pairs, leaving a single soliton
to propagate indefinitely �14�.

The top panel of Fig. 4 depicts a typical example of the
spacetime evolution of the array, time rightward, oscillator
number upward. Grays code angles �n�t�. Most of the time,
individual oscillators are at rest, rotated positively �white� or
negatively �black�. Movement occurs when a soliton passes
through, reversing an oscillator’s rotation. The bottom panel
of Fig. 4 depicts the spacetime evolution of the angular ve-

locities �̇n�t�, approximated by taking finite differences of the
angles. Blues correspond to positive angular velocities, reds
to negative. Color saturation is proportional to speed, so that
white represents zero. In the top panel, solitons appear as
diagonal discontinuities. In the bottom panel, solitons appear
as alternating red and blue diagonal lines, marking succes-
sive reversals of oscillator rotation.

Quiescence is possible in even-element arrays, making
annihilations more dramatic. Consequently, we next config-
ure the apparatus as a 14-element array. After the array
reaches its static, spatially alternating attractor, we introduce
a soliton by manually reversing and holding a single oscilla-
tor. When the soliton travels the desired separation distance,
we release the oscillator, inducing a second soliton. The two
solitons travel through the array until they collide and anni-
hilate.

Figure 5 illustrates a typical example. As before, the top
panel depicts angles and the bottom panel depicts angular
velocities. During this run, the gears implementing the peri-
odic boundary conditions introduce sufficient friction to
cause the last oscillator to reverse somewhat sluggishly.

In computer simulations of these systems, we find very
long transients and annihilation times, which we want to in-
vestigate with this experimental system. Consequently, we
systematically record the times to annihilate t, as a function
of initial soliton separation �n in our 14-element array. We
always measure the separation in the direction of propaga-
tion from the leading edge of the fiducial soliton �at one end
of the array� to the leading edge of the other soliton. We call
the smaller of �n and N−�n the minimum separation.

Figure 6 reports our results. On average, since annihila-
tion depends on close approach, the larger the initial mini-
mum separation of the solitons, the longer they take to anni-
hilate. The larger minimum separations are also associated
with bigger spreads in annihilation times. For an array of
identical elements, the plot would be symmetric, because
separations of �n and N−�n are physically equivalent.
However, in our experimental apparatus, there are slight
positive-negative asymmetries in the ease with which the
oscillators reverse. As we show in Sec. V, this can lead to the
observed asymmetry in Fig. 6.
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FIG. 4. �Color� Experimental spacetime evolution of a cyclic
array of N=15 one-way coupled oscillators. Grays code angles �n�t�
�top� and red-white-blue hues code negative-zero-positive angular

velocities �̇n�t� �bottom�. From random initial conditions, a soliton
pair annihilates at about t=16 s, leaving a single soliton to propa-
gate indefinitely.
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FIG. 5. �Color� Experimental spacetime evolution of a cyclic
array of N=14 one-way coupled oscillators. Grays code angles �n�t�
�top� and red-white-blue hues code negative-zero-positive angular

velocities �̇n�t� �bottom�. From random initial conditions, a soliton
pair annihilates at about t=70 s, leaving a quiescent array. �We
stopped recording shortly thereafter and extrapolated the static
spacetimes to emphasize the final static state and to better compare
with Fig. 4.�

EXPERIMENTAL OBSERVATION OF SOLITON… PHYSICAL REVIEW E 78, 066604 �2008�

066604-3



V. ANALYSIS

As the solitons propagate, they vibrate the array. This is a
source of noise not included in Eq. �2�. Consequently, to
better understand our experiments, we perform computer
simulations of one-way coupling in the presence of both dis-
order and noise. We generalize Eq. �2� to

I�̈n = − �n��̇n��̇n + A�n − b�n
3 − ��n−1 + �n�t� . �3�

We model the slight rotational asymmetry of the oscillators
with asymmetric �or direction-dependent� viscosities

�n��̇n� =��n+, �̇n � 0,

�n−, �̇n 	 0,
� �4�

where �n� are static, uniformly distributed random variables.
We model the noise by taking �n�t� to be independent, expo-
nentially correlated, Gaussian random processes. We choose
colored noise because viscosity damps higher frequencies.
We generate the colored noise using the Fox et al. algorithm
�15� and numerically integrate the stochastic equations of
motion using the Euler-Maruyama algorithm �16�.

In the simulation, rotational inertia I=1.0. Spring and
pendulum constants a=0.72 and b=0.5 shape the bistable
potential. The coupling �=0.5 and the mean viscosity �
=1.0. Three interrelated parameters characterize the colored
noise: the noise intensity D=0.01, the correlation time 

=0.1, and the variance �2=D /
. Our integration time step
dt=0.005. Units of time are arbitrary. We distribute the cal-
culations over the University of Portland’s 32-processor Mac
cluster.

We simulate the annihilation of pairs of solitons in an
array of N=14 elements. Fixing the initial position of one
soliton, we vary the initial position of the second soliton. For
each separation �n, we record the time to annihilation for
32 000 different realizations of the noise but the same real-
ization of the disorder. Consistent with the experimental data
of Fig. 6, the annihilation times have very broad distribu-
tions.

We simulate many realizations of disorder and plot the
mean annihilation time t as a function of initial separation
�n. Generically, we find that asymmetric disorder skews the
mean annihilation time plots. In Fig. 7, we present a particu-
lar realization �framed boxes� of 20% asymmetric disorder
that generates a skewed annihilation time plot similar to the
experimental data of Fig. 6. For comparison, we also present
the symmetric case �filled circles�. Table I reports the specific
viscosities.

As two solitons chase each other through the array, they
rotate each oscillator in opposite ways. The asymmetric, dis-
ordered viscosity can thereby make it harder or easier for a
soliton to propagate. For example, if the viscosity makes it
easier, on average, for the fiducial soliton F to rotate the
oscillators, it will tend to propagate faster than the other,
slower soliton S, as indicated in the insets of Fig. 7. How-

TABLE I. Specific realization of 20% disorder used in Fig. 7.

n �n− �n+

1 1.024552 0.889993

2 0.957237 0.977575

3 0.914017 0.857912

4 1.025422 1.145871

5 1.158161 0.892322

6 0.801605 0.984232

7 0.870529 1.050466

8 1.177949 1.138434

9 0.803999 0.902832

10 0.816301 0.977579

11 0.869777 0.946608

12 0.823528 1.024973

13 0.853576 1.151475

14 1.027378 1.008514
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FIG. 6. �Color online� Experimental means and standard devia-
tions of 100 soliton annihilation times t as a function of initial
separation �n, for an array of N=14 oscillators, with 20 trials for
each of 5 �n. Pairs of solitons with different separations �n=3 and
11 �insets�, measured from the fiducial soliton �at one end of the
array� in the direction of propagation �arrow�, share the same mini-
mum separation of 3.
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FIG. 7. �Color online� Simulated mean soliton annihilation
times t as a function of initial separation �n, for an array of N
=14 oscillators without �filled blue disks� and with �framed red
boxes� 20% asymmetry in the oscillator viscosities. These asymme-
tries make soliton F �inset� faster and soliton S slower than other-
wise. This speed differential advances the typical noise-induced
proximity annihilation of F by S for �n=3 but retards the typical
noise-induced proximity annihilation of S by F for �n=11.
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ever, annihilations still typically occur by noise-induced fluc-
tuations, which are effective when the solitons are in close
proximity. Thus, the speed differential will tend to advance
the noise-induced proximity annihilations for small �n �left
inset, Fig. 7, where F will catch S but more quickly than
without the differential�. Similarly, the speed differential will
tend to retard the noise-induced proximity annihilations for
large �n �right inset, Fig. 7, where S will catch F but not as
quickly as without the differential�.

Therefore, if the fiducial soliton experiences less viscosity
than the other soliton, the annihilation time plot skews by
decreasing times for smaller initial separations and increas-
ing times for larger initial separations. Conversely, the anni-
hilation time plot skews in the other direction if the fiducial
soliton experiences more viscosity than the other soliton.

VI. CONCLUSIONS

Formally, one-way coupling involves deleting one of two
coupling terms from Eq. �1�, which describes a well-studied
array of bistable oscillators. This breaks the symmetry of the
array and generates solitons that propagate one way in a
damped medium that would otherwise suppress any excita-
tion �4,8�. In practice, we exploit the fact that the downward
force of a water jet is independent of the transverse force that

directs it to realize the dynamics of Eq. �2� in a simple and
inexpensive mechanical array.

As we have shown here, one-way coupling is not simply a
mathematical exercise. Our experiments highlight the impor-
tance of both noise and disorder in understanding the dynam-
ics of one-way coupled arrays. In particular, as elucidated by
our simulations, the inevitable slight asymmetries in oscilla-
tor rotation lead to asymmetries in soliton speeds that skew
annihilation time distributions. Such work illustrates the syn-
ergy that theory, simulation, and experiment can bring to
understanding a different system. Early theory and simula-
tions inspired our experiment, which in turn has inspired
further simulations and theory.

One-way coupling is a special, extreme case of wave
propagation in anisotropic media. Future work includes the
study of transitional behavior as the coupling ranges from
fully isotropic to fully anisotropic, a complete understanding
of the role of noise �especially for very large N arrays�, and
generalizations to higher dimensions where different phe-
nomena are currently under investigation.
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